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Abstract

‘1 ‘he usefulness of a knowledge based system
is highly dependent upon the implementation of
the knowledge base which drives that system.
The knowledge acquisition and cngineering
process is a recognized bottleneck in the
development and deployment of knowledge
based systems. This paper presents a case study
oft he kno wledge engincering process employed
to support the Link Monitor & Control Operator
Assistant (LMCOA). The LMCOA is a
prototype systecm which automates the
configuration, calibration, test, and operation
(referred to  a s precalibration) of  the
communications, data processing, metric data,
antenna, and other equipment used to support
space-ground communicant ions with deep space
spacecraft in NASA’s Deep Space Network
(DSN).  The primary knowledge base in the
L.MCOA is the Temporal Dependency Network
(TDN) - a directed graph which provides a
procedural representation of the precalibration
operation. The TDN incorporates precedence,
temporal, and state constraints and uses scveral
supporting knowledge bases and databases.
The paper provides a brief background on the
IDSN, and describes the evolution of the TIDN
and supporting knowledge bases, the process
used for knowledge engineering, and an
analysis of the successes -- and problems -- of
the knowledge engineering effort.

Introduction

DSN Link Monitor & Control (I.MC)
operations consist primarily of executing
procedures to configure, calibrate, test, and
operate a communications link between an
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interplanetary spacecraft and the ground station.
Currently, LMC operators are responsible for
integrating procedures into an end-to-end series
of steps. In this article, wc address the usc of a
Temporal Dependency Network (TDN) for
specifying operations procedures. The TDN
incorporates the insight of operations,
engineering, and science personnel to improve
mission operations. An operational test of this
concept as implemented in the LMC Operator
Assistant (1. MCOA) prototype was performed in
early 1993.°The domain selected is for Galileo
Very lLong Baseline Interferometry (VLBI) Delta
Differential One-way Ranging (DDOR)
precalibration using the 70m antenna at the
Goldstone Deep Space Communications
Complex (GDSCC) in California. ‘I-he
extensibility of this representation to other
domains is now being analyzed. This paper
analyzes the knowledge engineering effort
required during the development of the
LMCOA prototype. in the first section,
knowledge engincering is defined followed by a
discussion of the initial, high level domain
analysis. The next section presents the low level
domain analysis as wc]] as the definition of a
TDN and the information required to build it.
Finally, results arc presented as well as
recommended tools to facilitate building TIDNs.

Knowledge Engineering

As shown in Figure 1 6 our approach to
knowledge engincering is an interative process
which contains the following steps. The
development of the TDN representation
followed these steps: acquire the know] edge,
organize it, analyze and develop conceptual
models, review models with experts, implement
the model and knowledge base, and review




performance. ‘1’here were two major iterations
through the process. Thefirst corresponds to a
domain analysis, where the knowledge
engineering was at a high level and resulted in
the design of the TDN. The second pass was
used to refine the TDN representation, add
additional knowledge structures neecded to
support real-time operations, and build the
knowledge base usced to support the VLBI
DDORTDN.

1DSN operations personnel identified 1.MC
operations, and specifically precalibration as a
major problem. The intent of the initial domain
analysis was to characterize this problem and
identify ways of improving operations.
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Figure 1. Detailed Investigation: knowledge
acquisition and system devclopment.6

High level domain analysis

The first step wc took was to become
familiar with how an operator performs
precalibration. Precalibration is the task of

creating a communications link between a DSN
antenna and a spacecraft. During precalibration,
the operator must type in well over 100
directives to configure, test and calibrate the
subsystems and must monitor over 1000
responses (in the form of textual messages on a
scrolling log) to determine the execution status
of those directives.

A directive is the basic unit of control that
the operator has and is the primary interface to
the subsystems. The operators need to know
thousands of directives from which they select
the ones appropriate to perform the
precalibration. The operators are responsible for
determining the appropriate sequence of
dircctives, inserting the correct parameters, and
determining, with limited support from the
system the state of the equipment following
execution of those directives.

The knowledge acquisition effort had to
address two specific issues, the first being what
were the appropriate directives, their
parameters, execution responses and other
monitor and control information associated with
a directive. The second issue was in what order
did these directives need to be executed in order
to successfully perform precalibration. To
acquire this information, a variety of knowledge
engincering techniques were used which
included reviewing operations logs,
interviewing operations and engineering
personnel, and reviewing documentation. As a
result  of these activities several specific
operability problems were identified with
precalibration.

Currently, operators must manually enter
hundreds of directives through a command-line
interface. Parameters to these directives are not
available on-line but rather in hard copy form
which the operator must sift through. After
sending a directive, the operator must check a
scrolling log tosce that it was executed, duc to
lack of closed loop control. At the same time
they must also monitor the health and status of
subsystems by analyzing the data in scrolling
logs and several graphical displays. If operators
multiplex their time to work on several
subsystems at the same time, they must correlate
a variety of monitor data and cvent messages to
the specific subsystems without systemsupport.
Therefore there is a lack of assistance for
supporting parallel operations. An added
difficulty is that the operator must filter through
alarm messages, many of which are false alarms,



in order to identify significant ones. Finally, the
entire representation of the operations
procedure is documented in several manuals
which address a specific subsystem or
spacecraft, or provide a general overview of an
activity, The operators do not have a procedure
to follow from start to end. They must refer to
the documentation and rely on their own
experience®

Iind-to-end Procedure Representation

The combination of these problems results
in a system which requires large amounts of
time for subsystem configuration and
calibration. It is also susceptible tokeyboard
entry errors, and places a huge burden on the
human operators to correlate and process a large
amount of data. Based on this analysis, it was
decided to pursue an Artificial Intelligence-
based approachto improving DSN link
operations. Addressing the above mentioned
problems served as the initial requirements for
the LMCOA. Onc of the main requirements was
development of an end-to-end representation of
a precalibrat ion procedure.

Analysis of operator logs showed that some
dircetives could beissued in different orders.
Interviews with operations personnel identified
that there wereindependent sequences of
directives. These two facts together implied
that there was inherent parallelism in
precalibration. The concept of a TDN was
developed which could represent a procedure
with parallel activities. We define what a TDDN
is and how wec usc it later in this paper.

Perspectives on Precalibration

Discussions with operations, engineering,
and scientific personnel lead to an
understanding of the difficulties of
precalibration and in particular, there was an
interest in improving precalibration fora V 1.111
1)>DOR pass on the 70m antenna. The
perspectives of several individuals regarding the
details of precalibrationled to the

comprechensive ‘1'1IN representation for anend-
to-end precalibration procedure.

Operations personnel arc responsible for the
real-tinw activity of precalibration. They know
what equipment is necessary to setup the link,
how much time is required and available, and
the procedure to configure the equipment in the
link.  The operators arc responsible for
performing, certain activities at particular times,
based on scheduling information available to
them. They also know what really works, and
therefore, they maintain their own notes for how
to configure the equipment. Since time is a
major constraint, they also know the options
available. During link monitor and control
activities, they must consider safety, time, and
dataintegrity when making decisions.

Subsystem and opera t ions engineers arc
primarily interested in the equipment required
for the link. Basedon their intimate knowledge
of the equipment, they prescribe recommended
sequences of directives for configuring the
cquipment. These recommendat ions are bawd
on equipment physical characteristics and
limitations. Therefore, the engincers provided
the reasons for sequence of directives,
dependencies between subsystems, as wc]] as
verification of the inherent parallelism in some
precalibration activities.

The scientists’ interest in precalibration is to
ensure the best possible data resulting from a
pass with a spacecraft. They prescribe what
tests to perform during precalibration to ensure
high quality data, Given the constraints of real-
time operations, they also recommend the most
important aspects of precalibration and which
arc optional.

The TN was designed to incorporate the
various precedent, temporal, and state
constraints required to represent these various
perspectives on the precalibration procedure.
The TN is described in more detail in the next
section. The result of this initial phase of
domain analysis was a high level TDN for VI.BI
DDOR precalibration, shown in Figure 2.
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Figure 2. High level TDN.

Detailed domain analysis

in order to fully test the concept of the TDN
in the .LMCOA prototype and to provide semi-
automalted precalibration and closed loop
control, it was necessary to enhance and refine
the knowledge in the TDN. To provide closed
loop control a rule-based module, the Situation
Manager?t (SM) was developed.  The SM
evaluated incoming data from subsystems and
checked prccohdilions and postconditions in the
TN, to verify and control the execution of the
T'DN. In order to support closed loop control,
the support data mentioned above was
expanded to a separate knowledge base, the
Ldirective Diet ionary. On top of this knowledge
base, the low level TDDN was built. In order to
understand the TDN representation it is
necessary to first understand the basic building
Mock of the TDN, directives.

The primary data unit of the TDN is a
directive. A directive is a control message which
is sent to an individual subsystem in order to
perform a specific function. The primary data
fields arc the destination subsystem, the control
action, and any associated parameters. ‘To
support the TDN model of procedures, an
enhanced representation of a directive is used.
An example of a directive definition is presented
in Table 1. Fach directive is represented in the

Iirective Dictionary as an object containing the
following information.

1. Directive syntax (subsystem, message
name, required and optional parameters).
2. The function of the directive: what

primary and side effects it has on the
subsystem; what changes it causes in any
devices or subassemblies.

3. Parameter definitions: any constraints on
the parameters and the support data used
to d etermi ne parameter values.

4, Directive responses: the response
messages sent from the subsystem to the
LLMC to acknowledge receipt of the
directive. This is only a communications
handshake and does not indicate that the
directive was successfully executed.

5. Rejection notices: messages sent by the
subsystem when the directive has failed to
execute. (Includes syntax errors as well as
real-time failures).

6. Monitor and event information: data that
may be generated by the subsystem based
on the actions of the directive. Specifics
which parameters and user interface
displays to monitor to confirm that the
directive has successfully executed.

7. I’reconditions: what state must the system
be in before this directive can be sent.

8. Posiconditions: what state the system is in
when the directive has successfully
executed.



Actions I Transmits vredict data set CW to the ACS
Sources I 1.0eDOY-067-1991,1inc 189
Preconditions Predicls available
Postconditions Predict table is filled

P’redicts downloaded successfully
Responses COMPLETED.PROCESSING DLOAD REQUEST
Rejections COMPLETED.INVALID PREDICT SET NAME
Event notice PA 14:INTERPOLATING CW SUB1
messages .

PA 14:ACS CONFIRM DI OAD..,

I'A 14:ACS <time>

Table 1. Directive Example, Al DLOAD PRED CW

The information in the directive definitions
is stored in a knowledge basec, the Directive
Dictionary. Of the above listed types of
information, only a subset, dealing primarily
with syntax and general responses, is available
in the DSN documentation. Much of the
information, such as extensive preconditions
and postconditions is available only from
opera tions personnel and engineers.

Temporal Dependency Network

A TDN is a complex object which encodes
the procedural information necessary to perform
a specific operational task. The primary
representation of the TDN is an augmented
directed graph. In the graph, each arc represents
a strict precedence relationship, each node a
sequence of directives which perform a subset of
the overall function. The network explicitly
specifics the precedence relationships between
nodes, any potential parallelism, and rules for
recovering from global faults. The nodes, or
blocks, consist of the directives, temporal
constraints, preconditions and postconditions,
and local recovery information should the Mock
fail. An example block is given in Figure 3.

After identifying the directives necessary to
perform the given operation and any
preconditions and postconditions specific to the
type of pass, designing a TIDN becomes an
exercise in assigning directives to blocks. The
TDN is the genera] representation of an
operational task. An instance of the TDN is
crca ted from the general representation and is
parameterized for the specific pass being
performed. From this perspective, the TDN acts
as a template for operations, and individual
parameters (time, frequency, file names) arc
filled in at execution time to perform operations.

Preconditions:
ACS finished resctting

Directive sequence:
AP CONN 14
AP ACS DELUT 299
Al ACS REQCORR

Postconditions:
ACS received connect
DEIL.UT set to 299

Figure 3. Block Example

Detailed TDN

After obtaining a high level version of the
procedure, the next step is to define the
procedure at a lower level.i.e. down to the level
of each operator directive issued and other
actions performed. As a result of reviewing the
high level TDN for VLBIDDOR, an expert
provided detailed flow charts of the
precalibration procedure including  parallelism
of subprocedures. This formed the basis of the
low level TDN. Subsequently, more details were
obtained about the configuration procedure of
cach subsystem and were reviewed by other
experts. These knowledge engineering tasks
required on the different subsystems can. be
done in parallel while keeping track of
dependencies to and from the other subsystem
configuration procedures.

At a later time these procedures will be
merged into a single TDN. e.g. While reviewing
the TDN with operations personnel, it is
important to find out dependencies between
subsystems. For example, in Figure2 “V
NTEMP x y*“ is issued after getting the system



temperature and threshold which is done during
Precision Power Monitor (PPM) setup.
Dependencies arc not always explicitly
identified when the procedure is sequential.
However, explicit representations are needed for
parallel representation of the procedure.

The information that needs to be obtained
for the low level TDN consists of directives
issued, directive preconditions and
postconditions, displays accessed, manual
operat ions performed such as making safety
pages and manual configurations and the order
of all of these actions. This information can most
casilybe obtained by interviewing operations
personnel and by referring to operations logs.
SOmc documentation exists which has this low
level procedural information, but not necessarily
all the details that arc required to successfully
perform a precalibration.

Data_for Closed 1.oop_Control

Oncof the features of the LMCOA
prototype is to provide closed loop control of
TIDN exccution. That is, it provides the operator
with explicit and consistent feedback about the
executing state of directives.” In order to
provide this capability it ‘is necessary to
determine the responses, event notice messages,
monitor data, and preconditions and
postconditions associated with each directive.
The details of acquiring this information and the
usc of it for closed loop control is discussed
below.

Vor each directive sent out, a directive
response is returned which is an
acknowledgement from the subsystem that the
directive was received. Event notice messages
and monitor data provide additional
information on the status of the subsystem in
response to a directive. ‘The responses and event
notice messages can be initially determined from
analyzing operations logs and referencing
Software Operators Manuals (SOMs). However,
it is necessary o find out from operations
personnel and engineers the usc and meaning of
these messages. in some cases, the receipt of a
directive response is the signal that the next
directive can be sent. in other cases, the
operator waits for onc or more event notice
messages in response to a direclive in order to
determine successful completion of a directive
and to proceed with sending more directives.

6

Identifying the responses and event notice
messages for cach directive was not always
straightforward, For example, a fcw very long
event notice messages were truncated in both
the scrolling and printed logs.Toprovide
closed loop control in the LMCOA prototype,
knowledge of the entire message is required. in
such cases, the . MCOA itself assisted in some of
the knowledge engincering. It was used to trap
the messages directly from the 1.AN. These
complete messages were then inserted into the
knowledge base.

The SOMS provided varying degrees of
information on direclive responses and event
notice messages depending cm the particular
subsystem. Insome documentation, the
directive responses are completely specified
with the directive. In other cases, only the type
of response is documented, e.g.PROCESSING,
COMPIL.ETED while there may be more text in
the actual response. Also, the documentation for
different subsystems varies in how the event
notice messages are presented. in some cases,
they arc organized by type of action that the
message is associated with. For example, the
Antenna Pointing Assembly (APA) SOM
organizes thcm according to predict, conscan,
monitor, etc. in other SOMS the event notice
messages arc listed alphabetically. Finally, some
SOMS provide explanations of the messages and
others do not. interviews with experts were
needed to fill in information gaps.

The existing prototype made limited use of
monitor data.  Onc problem was that in the
existing environment there was incomplete
access to monitor data. in addition, the usc of
monitor data was integrated into the prototype
after major knowledge bases had already been
built. However, in extensions of this prototype,
an emphasis will be placed on creating the
knowledge bases according to monitor data.

Preconditions and postconditions

I’reconditions specify device states that must
be true before the directive can execute.
Postconditions specify the expected device states
after the directive has successfull y executed.
Precedence relationships in the TDN arc formed
by ensuring that the actions required to satisfy a
directive precondition occur and arc verified
before that directive executes. So, if two
directives arc in sequence because onc¢ depends
on the successful completion of the other, these
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directives will be placed in separate blocks and a
precedence relationship formed between them.
IJirective preconditions are pushed up to the
block level, so that before the block begins
executing its first directive, all preconditions of
all directives in that block must be satisfied. in
some cases, this check is redundant because
completion of the previous block is dependent
upon satisfying a postcondition which satisfies
the precondition of the next block. We have
designedthe TDN in this wa y for two reasons:

1) If a directive .or block is moved to a
different location in the TDN, violated
precedence relations will be detected.

2) if a device fails between the end of the
first block and the start of the second, wc
have a way to detect the failure before
proceeding.

The preconditions and postcond it ions of
directives were determined by reviewing
subsystem documentation and by interviewing
operations personnel and engincers. By
analyzing rejection messages in logs and
subsystem documentation, preconditions, may
become apparent. For example, the following is
a rejection message associated with Al'’ ACS
IDLE (i.e. put the ACS into IDLE state.):

REJECTED. CANNOT CHANGE MODE
WITH SCAN ON

Therefore, a precondition is that SCAN is
OFF.

Results and Tools

The block level TDN for VLBIDDOR
precalibration was the result of assighing
direct ives to blocks and incorporating the above
subsystem data, preconditions., and
postconditions. The LMCOA was successfully
demonstrated by performing precalibration for a
VLBIDDOR pass at the Goldstone 70 Meter
Antenna in Goldstone, California.

Usc of the TDN itself during the knowledge
engjineering effort proved to be a valuable tool to
communicate with experts about procedural
details. Analysis of the knowledge engincering
described above led to the need for other tools to
facilitate this type of cffort in the future.

0 Access to online documentation
including SOMS and monitor data documents to
facilitate the construction of the knowledge
bases.

o A graphical too] to facilitate building,
modifying, and maintaining TiDNs.

o A tool to build the Directive Dictionary,
which includes links to critical documentation
and software and automatic notification when
ncw versions of such information is available.

o0 A method of arbitrating and
documenting the different views and
preferences of experts regarding the procedure.

Conclusion

Previous research involved investigate ing the
usc of a Temporal Dependency Network (TDN)
as a way of specifying 1.MC operations
procedures that incorporate the insight of
operations, engineering, and science personnel
to improve mission operations. An operational
test of this concept as implemented in the LMC
Operator Assistant (LMCOA) was performed in
early 1993. The application domain was Galileo
VI BIDDOR precalibration on the 70m antenna
at the GDSCC in Goldstone, California. The
extensibility of this representation to other
domains is now being analyzed. This paper
analyzed the knowledge engineering effort
required to build a TIDN and recommend cd
improvements to the LMCOA to facilitate the
knowledge engineering, process.
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Dave Girdner, Dan Kicwicz and the many
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Goldstone Deep Space Communications
complex.
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